13 research outputs found

    EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer

    Get PDF
    Transport of macromolecules through the nuclear pore by importins and exportins plays a critical role in the spatial regulation of protein activity. How cancer cells co-opt this process to promote tumorigenesis remains unclear. The epidermal growth factor receptor (EGFR) plays a critical role in normal development and in human cancer. Here we describe a mechanism of EGFR regulation through the importin β family member RAN-binding protein 6 (RanBP6), a protein of hitherto unknown functions. We show that RanBP6 silencing impairs nuclear translocation of signal transducer and activator of transcription 3 (STAT3), reduces STAT3 binding to the EGFR promoter, results in transcriptional derepression of EGFR, and increased EGFR pathway output. Focal deletions of the RanBP6 locus on chromosome 9p were found in a subset of glioblastoma (GBM) and silencing of RanBP6 promoted glioma growth in vivo. Our results provide an example of EGFR deregulation in cancer through silencing of components of the nuclear import pathway.This research was supported by the National Brain Tumor Society (I.K.M.), the National Institutes of Health grants 1R01NS080944-01 (I.K.M.), 1 R35 NS105109 01 (I.K.M.), and P30CA008748 (MSKCC Core Grant), the Geoffrey Beene Cancer Research Foundation (I.K.M.), the Cycle of Survival (I.K.M.), and the Seve Ballesteros Foundation (M.S.). B.O. was supported by an American–Italian Cancer Foundation fellowship and a MSKCC Brain Tumor Center grant. W.-Y.H. is the recipient of a FY15 Horizon Award from the U.S. Department of Defense (W81XWH-15-PRCRP-HA). A.C.-G. is the recipient of the Severo-Ochoa PhD fellowship. Further support was provided by the Sontag Foundation (B.S.T.). We thank all members of the Mellinghoff laboratory for helpful suggestions. We thank Dr. Fiona Ginty (Diagnostic Imaging and Biomedical Technologies, GE Global Research Center, Niskayuna, New York, USA) for assistance with multiplexed immunofluorescence. We thank A.J. Schuhmacher and C.S. Clemente-Troncone for assistance with the in vivo experiments, M. Kaufmann for assistance in the luciferase assays and N. Yannuzzi for assistance in cloning.S

    Effects of eight weeks of 6-OXO supplementation on serum hormone profiles and on serum and urinary clinical safety markers in resistance-trained males.

    No full text
    Includes bibliographical references (p. 64-69).The purpose of this study was to determine the effects of 6-OXO, an aromatase inhibitor, in a dose dependent manner on serum hormone levels and clinical safety markers in resistance trained males. Sixteen healthy trained subjects, who participated in a resistance training protocol, had blood samples taken at weeks 0, 1, 3, 8, and 11. These samples were analyzed for total testosterone, free testosterone, DHT, estradiol, estriol, estrone, SHBG, LH, FSH, GH, and cortisol. There were no significant differences between groups (p>0.01). However, total testosterone concentration, free testosterone concentration, and DHT concentration increased over the course of the study (p=0.009). Measures of body composition did not change with supplementation (p>0.05). Safety markers were seen to not be adversely affected with ingestion of 6-OXO (p>0.01). 6-OXO supplementation appears to be safe and increases total testosterone, free testosterone, and DHT concentrations independent of the two different doses.by Daniel A. Rohle.M.S.Ed

    DUSP4 protects BRAF- and NRAS-mutant melanoma from oncogene overdose through modulation of MITF

    No full text
    MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF. Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi
    corecore